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Iterative methods are considered for the solution of a coupled pair of second order elliptic 
partial differential equations which arise in the field of solid state electronics. A finite 
difference scheme is used which retains the conservative form of the differential equations. 
Numerical solutions are obtained in two ways-by multigrid and decoupled dynamic alter- 
nating direction implicit methods. Numerical results are presented which show the multigrid 
method to be an efficient way of solving this problem. 

1. INTRODUCTION 

In solid state electronics the designers of PIN diodes are interested in the effect on 
the performance of the diode due to changes in various design parameters. An 
advantage of producing a good mathematical model is that the testing, when 
performed experimentally, could be a lengthy and expensive process. A description of 
the model and the derivation of the equations can be found in Aitchison and Berz [ 2 1. 
The model gives rise to a coupled system of elliptic partial differential equations. 

In this paper we consider numerical techniques for the solution of this pair of 
equations. We consider a two-dimensional diode which is defined in Cartesian coor- 
dinates and where it is assumed that the diode is very long in the third dimension. 
After deriving the finite difference equations we describe applications of a multigrid 
method and the dynamic AD1 (DADI) method to obtain numerical solutions. 

2. THE DIFFERENTIAL EQUATIONS 

The problem is formulated in terms of the carrier density c(x, y) and a stream 
function u(x, y). The behavior of diodes which are effectively two dimensional and of 
rectangular cross section can be described by the equations 
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(1) 

(2) 

intheregionR=((x,y):O<x<A,O<y<B}. 
The boundary conditions are 

f3C b au r3u -zz 
ax (1%’ 

%=(l +b)$ on x = 0, (3), (4) 

ac - 1 au au - (1 + 6) & 
%=(1$ &= b 5 

on x=A, (5), (6) 

on y = 0, (7), (8) 

on y = B, (9), (10) 

where s and b are positive constants. 
There are two quantities in which the designers of diodes are particularly 

interested. The first is the equipotential check, K(y), given by 

- 2b 
K(y)= (1 + b)* 

+ Wc(O, Y> . c(A, Y>>. (11) 

Aitchison [ 1) showed that this quantity is constant. The second quantity of interest is 
the total charge, Q. defined by 

Q=!jRcd=b (12) 

We can easily verify that Q can be expressed in the form 

Q = 1 - s 1’ c(x, B) dx. (13) 

3. FINITE DIFFERENCE APPROXIMATION 

The finite difference equations are constructed using the integration method of 
Varga [ 8). This method was also used by Aitchison [ 1 ] who solved the problem 
using Newton’s method and a sparse matrix routine. The technique is used because 
the conservative form of Eq. (2) is retained in the finite difference scheme. 
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We consider a rectangle R in which A = 2 and B = 4. The region R is covered with 
a square grid of step size h in both the x and y directions where Nh = 2. Let ci,j and 
ui,j be the values of c(x, y) and U(X, y) at the grid point (xi, yj), where xi = ih and 
yj = jh. Let the region ri,j be defined as lying within R and being bounded by the 
lines x = xi - ih, x = xi + fh, y = yj - ih, and y = yj + ih. In our application of the 
technique the regions ri,j are either square or rectangular. Various regions ri,j are 
shown in Fig. 1. Let si,j be the boundary of the region ri,j. 

We first consider Eq. (1). Integrating Eq. (1) over the region ri,j gives 

dxdy=O. 

We apply Green’s theorem to the first two terms in this integral to obtain 

c dx dy = 0, 

where n is the unit outward drawn normal. 
The finite difference approximation at internal points is therefore given by 

ci+l jpci j 

‘h ’ 

+ ci,j- I - ‘Lj 
h 

h - h2ci,j = 0, (16) 

FIGURE 1 
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where 0 < i < N, 0 < j < 2N. This equation can be simplified to give 

Ci+l J ,‘+Ci-l,j+Ci,j+I +Ci,j-1 -4Ci,j=h2Ci,j> (17) 

which is the same as that obtained by using the standard live-point finite difference 
approximation to Eq. (1). 

To construct the finite difference approximation along x = 0 we need to consider 
the following integral 

=b{u(O, (j+ f)h)-u(O,(j- i)h)l 
(1 + b) 

b 
N- 

I 
uO,jtl - uO,j- 1 

- (1 + 6) i 2 ’ 
(18) 

where 0 < j < 2N. In deriving Eq. (18) we have used boundary condition (3) and the 
approximation u(0, (j + +)h) N (UO,j + u,,~+ ,)/2. Using Eq. (18) we obtain the 
following finite difference approximation to Eq. (1) along x = 0: 

2cl,j + cO,j+ I + cO,j- I - 4c0,j - 

where 0 < j < 2N. In a similar fashion we can obtain finite difference approximations 
to Eq. (1) along other parts of the boundary of R. 

We now consider the discretization of Eq. (2). Integrating Eq. (2) over the region 
ri,j yields 

(19) 

Applying Green’s theorem to this equation we obtain 

(20) 

The finite difference approximation to Eq. (2) at internal points is therefore 

ui+ 1.j - ui,j 
+ 

ui,jtl - ui,j ui-l,j - ui,j ui,j- 1 

ci,j+l + ci,j + ci-l,j + ci,j + ci,,j-l 

- ui j  

- 0, 
ci+l,j + ci,j + q;. - 

(21) 

where 0 < i < N, 0 < j < 2N. 
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To construct the finite difference approximation along x = 0 we consider the 
integral 

= (1 + b) log (22) 

In this calculation we have made use of boundary condition (4). So the finite 
difference approximation to Eq. (20) along x = 0 is given by 

("lJ-uO,j) + ('O,j+l -'O,j) . L+ C"O,j-l -uo,j) . L 

Stcl,j + cO,j) 4Cc0.j+ I + cO,j) 2 fCcO,j-l + cO,j) 2 

- (1 + 6) log 

( 

'o.j+ 1 + '0.j 

cO,.j- I + cO.j 1 

= 0, 

where 0 < j < 2N. 
Similarly we obtain finite difference approximations to Eq. (2) along x = 2 using 

the boundary condition given by Eq. (6). 
Along y = 0 and y = 4 we have 

24; o = 0 and Ui,Zh = -1, 

respectively, where 0 ,< i < N. 
Let Kj be the discrete form of K((j + f)h) for j= 0, l,..., 2N - 1; K((j + i)h) is 

discretized using the trapezoidal rule. The resulting discretization is given by 

- 2b ;w 
Kj= (1 +b)’ izo 

+ l"g{(cO,j+ 1 + cO,j)(c*r,j+ I + c,\v,j)J, (23) 

where the summation notation is defined by 

Aitchison [ 1 ] shows that Kj is a constant independent ofj and so the above difference 
scheme exactly conserves this constant. To calculate the total charge Q we discretize 
Eq. (13), again using the trapezoidal rule. Let Q be the discrete form of Q, then Q is 
given by 

(24) 
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4. A MULTIGRID ALGORITHM 

We consider a multigrid method of solution to this coupled system of equations 
using a natural extension of the accommodative full approximation storage (FAS) 
cycling algorithm of Brandt [3]. The multigrid method is a numerical strategy to 
solve partial differential equations by switching between liner and coarser levels of 
discretization. The characteristic feature of the method is the combination of a 
smoothing step and a coarse grid correction. During the smoothing step the residuals 
are not necessarily decreased but smoothed. In the following correction step the 
discrete solution is improved by means of an auxiliary equation on a coarser grid. 
This results in an iterative method that is usually very fast and effective. A detailed 
description of the multigrid method can be found in Brandt [3] and Hackbusch 171. 

Let G, ,..., G, be a sequence of grids approximating the region R = {(x, y): 
0 <x < 2, 0 < y < 4) with corresponding mesh sizes h, ,..., h,. Let h, = 2h,+ 1 for 
k = l,..., M- 1. The problem is discretized on each grid G, using the technique 
described in the previous section. Let the discrete operators Lf and Lt define the 
resulting discretizations of Eqs. (1) and (2), respectively, on G,, where Li depends on 
ck. For k < M we solve an auxiliary equation on G, (cf. Algorithm 1). The steps of 
the algorithm are 

Algorithm I 

(a) Set k = M, the initial working level and choose sk to be a suitable 
tolerance. Choose initial approximations ck and uk to c and U, respectively. Set f: 
and f t equal to zero since Lfck = 0 and Liuk = 0. On coarser grids f f and f i will 
denote the modified right-hand sides (see Eqs. (25) and (26)). 

(b) Set Fk = 103’. 

(c) Perform one relaxation sweep over all the equations. Compute the /,-norm 
of the residuals ek, where 

e,=h-’ vw:Ck - fX + IIGuk - .mr. 

(d) If ek < ckr i.e., relaxation has sufficiently converged on the current level, go 
to step (f). If not, and if convergence is still fast, i.e., ek < qck, where q is fixed and 
chosen later, set I?~ = ek and go to step (c). The parameter v is known as the switching 
parameter. If convergence is slow, i.e., ek > +rk and we are not on the coarsest grid go 
to step (e). If convergence is slow and we are on the coarsest grid go to step (c) to 
perform another relaxation sweep. 

(e) Decrease k by 1. Transfer the current approximations on level k + 1 to the 
new level k as 

Ck = I;, , Ck+ ‘, Uk = I;+, Uki- ‘, 
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where Ii+, denotes some transfer of values from the line grid. The right-hand sides 
for the new level are defined by 

f:=L:Ck+41:+,(f:+‘-L:+‘ck+‘), (25) 

f: = L:Uk + 4z;+,(f:+’ - L;+‘Uk+‘). 

The factor 4 appearing in the above equations is a scaling factor which is introduced 
because we multiplied through by h2 before defining the difference operators. Set sk = 
de k+, to be the tolerance for the problem on the new level where 6 is some parameter. 
Go to step (b). 

(f) If k = M, the algorithm is terminated since the problem has been solved to 
the required tolerance. If k < M we correct the approximation on the next liner grid 
G ktl' Put 

C k+l yCk+' +I;+'(Ck-I;+,Ck+'), 

u 
k+l =Uk+l 

+zf:+‘(Uk-z;+,Uk+‘), 

where the ckt i’s and u~+“s on the right-hand sides are the previous approximations 
on the level k + 1 and If+’ is some interpolation of values. Increase k by 1 and go to 
step (c). 

Multigrid Components 

We use “nonstandard” multigrid techniques introduced by Foerster, Stuben, and 
Trottenberg [6] and developed by Foerster and Witsch 151. 

(i) Relaxation. 

Pointwise Gauss-Seidel relaxation is used with the points ordered in the checker- 
board (even-odd) manner. The relaxation of the equations is performed in the 
following order: 

(1) relax the equation Liuk = f: at the white (even) points, i.e., those 
points (xi, yj) for which i + j is even; 

(2) relax the equation L:uk = f: at the black (odd) points, i.e., those 
points (xi, yj) for which i + j is odd; 

(3) relax the equation L:ck = f t at the white points; 

(4) relax the equation Lick = f f at the black points. 

This is just one of a number of ways of performing checkerboard Gauss-Seidel relax- 
ation on these equations. We experimented using several alternatives and found that 
the above order of relaxation was slightly more efficient than the others. At the end of 
the relaxation sweep the residuals of the equation Lfck = f f are zero at the black 
points since at this stage all the black point equations are simultaneously satisfied. 
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(ii) Fine-to-coarse transfer. 

Since checkerboard Gauss-Seidel relaxation produces highly oscillating residuals it 
is not advisable to simply transfer the residuals by injection to a coarser grid. Instead 
we transfer the residuals by full-weighting to the coarse grid because the coefficients 
of Eq. (2) are variable. For this transfer the operator Ii-’ is defined by 

Ik-‘vk - 1 
k i.j - dvti,2j + QC”‘;i+ I,Zj + L”;i- I.2j + vl;i,2j+ L + vZi.2j+ 1) 

+ +(Uti+ l,2j-1 + vk’- 
k k 

21 1,2j- I + O2it I,Zj+ I + v2iL I.211 I >. 

(iii) Coarse-to-fine transfer. 

Bilinear interpolation is used to transfer the correction to the fine grid to provide a 
new approximation there. 

5. A DYNAMIC ADI ALGORITHM 

We now show how the dynamic AD1 (DADI) method of Doss and Miller [4] can 
be used to obtain a numerical solution to this problem. The AD1 approach first 
converts Eqs. (1) and (2) to the parabolic equations 

(27) 

We assume that as t + co the solution of these time-dependent equations tends to the 
steady state solution, if one exists. The parameter A appearing in Eq. (28) is used to 
control the interaction between the equations. When these equations are discretized in 
time it means that, effectively, we use different time steps for the two equations. The 
right-hand sides of Eqs. (27) and (28) are discretized using the technique described 
earlier. We note that the systems of equations which we solve in this AD1 process are 
tridiagonal and diagonally dominant. This means that the necessary matrix inverses 
exist and the solution of the systems by Gaussian elimination is stable without the 
need for interchanges. Detailed discussions of the AD1 method and its implemen- 
tation can be found in Varga [8] and Young [9]. 

Each step of the DAD1 method comprises two double sweeps of the AD1 iteration 
with time step dt together with a bookkeeping double sweep of the AD1 iteration with 
time step 2dt. At the end of the step we use a computerized strategy to determine how 
to change At for the next step. Here we define a double sweep of the AD1 iteration to 
be a double sweep of AD1 performed on Eq. (28) followed by a double sweep of AD1 
performed on Eq. (27). The method we have described in this section is a .form of 
decoupled DAD1 method where, in a given iteration, we have preferred to iterate first 
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on u and then on c. A true DAD1 method for this system would solve simultaneously 
for both unknowns. In this case we would solve systems which are block tridiagonal 
with 2 x 2 blocks. The procedure we use is described briefly in Algorithm 2. 

Algorithm 2 

(a) Choose an initial time step At = At,. The acceleration parameters are then 
h’/At for Eq. (27) and h2/(L At) for Eq. (28). Set k = 0, where k is the total number 
of time steps we have advanced. Let E be the required tolerance. Choose initial 
approximations cck) and u(~). 

(b) Start a step of the DAD1 process with current approximations c(@ and u(~). 

(c) Perform two double sweeps of the AD1 iteration with time step At. Let 
cckt4) and uckt4) be the new approximations obtained. Compute e, the /,-norm of the 
residuals of the steady state equations. 

(d) If e < E, then the residuals are sufficiently small and the algorithm is 
terminated. If e > F, set At* = 2At and determine the corresponding acceleration 
parameters. 

(e) Perform a double sweep of the AD1 iteration with time step At* starting 
with approximations cck) and ~4~~) to obtain Fckf4) and zZ(~+~), respectively. This is the 
bookkeeping part of the DAD1 process. 

(f) Compute the test parameter TP given by 

TP = ~suM/ASUMJ, 

where 

SUM = lIc(k+4’ _ ;(k+4’/1; + IIU(k+‘U _ ;(kt“/l; 

and 

ASUM = llc(kt4) - $+I); + JIU(k+4’ - @II;. 

(g) It TP > 0.6, then we reject the present DAD1 step, replace At by &At and 
go to step (b). If TP < 0.6, then we accept the present DAD1 step and change At by 
the factor of 4, 2, &?, 4, a for the next step if TP falls in the intervals (--co, 0.051, 
(0.05,0.1], (0.1,0.3], (0.3,0.4], (0.4,0.6], respectively. Increase k by 4 and go to 
step (b). This is the computerized strategy for changing At. 

6. NUMERICAL RESULTS 

When s = 0, Eqs. (1) and (2) together with the boundary conditions (3) to (10) 
possess an analytic solution which is given by 

c(x 
3 
y) = P coW’ - xl + coWx)l 

4(1 + 6) sinh(2) ’ 
u(x, Y) = - $5 
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TABLE I 

Details of the Solution for Different Values of h 

h 

0.5 0.25 0.125 

c(l, 2) 0.0890 0.0906 0.0910 
u(l. 2) -0.5542 -0.5550 -0.5520 
c(0, 0) 0.2018 0.207 1 0.2086 
4,O) 0.1203 0.1228 0.1253 
c(O, 4) 0.059 1 0.0682 0.0749 
c(2.4) 0.0196 0.0203 0.0209 

Q 0.783 1 0.7871 0.7884 
K -1.6415 -1.6074 -1.5984 

when A = 2 and B = 4. These functions are used as our initial approximation to the 
solution of the problem for s # 0. Numerical results are presented for s = 5. The 
constant b was given the fixed value 2.7. 

In the multigrid method we define a work unit to be the computational work in one 
relaxation sweep over the finest grid. The step size on the coarsest grid is h = 1. The 
values of the parameters q and 6 in Algorithm 1 were chosen to be 0.5 and 0.3, 
respectively. It was found that the choice of n and 6 was not critical in the sense that 
values of these parameters in the neighborhood of the chosen values produced similar 
efficiency of the algorithm in terms of the number of work units. 

The algorithms were terminated when the /,-norm of the residuals was less than 
10P6. The results in Table I indicate the variation with h of the values of c and u at 
the center of the diode, the values of c at the corners, and the values of the constants 
Q and K. In Table II we give details of the multigrid method of solution. Details of 
the DADI method of solution are given in Table III for 1 = 1 and ,J = 0.05. The 
results were obtained on the Oxford University ICL 2980 computer. 

Various values of A were tried in the DADI method and it was found, by 
experiment, that the value A = 0.05 produced the fastest convergence. It can be seen 
from the computational details in Table III that this value of 1 is considerably better 

TABLE II 

Details of Multigrid Method 

h Number of Work Units Time (set) 

0.5 46 1.0 
0.25 56 1.9 
0.125 65 5.7 
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TABLE III 

Details of DADI Method 

h 

0.5 
0.25 
0.125 

Number of DADI Steps Time (set) 

i=l I. = 0.05 I=1 i = 0.05 

84 64 2.3 1.9 
140 98 14.0 9.7 
216 122 155.7 88.6 

than A = 1 for the smallest mesh size h = 0.125. However, even with this value of A, 
the multigrid method performs much better than the DAD1 method on this problem. 

The values of the asymptotic convergence factor are a little higher than typical for 
multigrid methods. Experiments were performed fixing each of the variables in turn to 
determine how the convergence rate behaves for a single equation. The results of this 
investigation are given in Table IV. In this table we give the asymptotic convergence 
factors per work unit for different values of h. We see that for the single equations the 
typical multigrid rates are realized. Closer examination revealed that the higher 
convergence factors of the system were due to the coupling through the boundary 
conditions. A more effective treatment of the boundary conditions in the multigrid 
context will be the subject of future work. 

The methods described here are not restricted to use on square grids. These grids 
were chosen since there were no advantages in using non-uniform grids for this 
problem. A qualitative discussion of what one learns about the diode from this 
solution appears in Aitchison [ 11. 

TABLE IV 

Asymptotic Convergence Factors 

h 

0.5 0.25 0.125 

c equation 0.42 0.45 0.46 
u equation 0.45 0.35 0.35 
system 0.72 0.75 0.71 
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